宣武医院唐毅教授团队《Alzheimers Dement》建立预测皮质下缺血性脑小血管病认知障碍发生的机器学习模型
近日,bob综合手机版宣武医院神经内科唐毅教授团队联合生物医学工程学院李春林教授团队在《Alzheimer's & Dementia》上发表题为“Unsupervised machine learning model to predict cognitive impairment in subcortical ischemic vascular disease”的研究论文。该研究基于长期、多中心随访的皮质下缺血性脑小血管病队列(SIVD),利用无监督机器学习建模,发现基于DTI+fMRI组合模型可以有效预测认知障碍的发生,为脑小血管病的临床诊疗提供了方便有效的工具。bob综合手机版宣武医院医师秦琪、生物医学工程学院博士生屈俊达、宣武医院研究生尹筠思为共同第一作者,宣武医院邢怡副主任医师、生物医学工程学院李春林教授及首宣武医院唐毅教授(末位通讯)为论文共同通讯作者。
皮质下缺血性脑小血管。⊿IVD)是一种常见的小血管疾。疾÷仕孀拍炅涞脑龀ざ黾,其中约50%的患者会出现认知功能退化,最终发展为皮层下血管性认知障碍(SVCI),而另50%的患者并不发生认知障碍。然而,哪些患者最终会发展为认知障碍,目前仍缺乏有效的预测模型,也是亟待解决的临床问题。
bob综合手机版宣武医院唐毅教授团队自2015年起开始建立SIVD及SVCI患者队列。本研究纳入83位SVCI 患者和53位SIVD患者,基于患者的临床信息、神经心理测评及多模态核磁影像数据等建立无监督机器学习模型,综合比较采用不同模型的预测表现,发现DTI+fMRI组合预测认知障碍发生的准确性、敏感性和特异性分别为86.03%、79.52%和96.23%,高于现有方法。在随后基于外部队列的验证研究显示,该模型表现稳定,准确性、敏感性和特异性分别为80.52%, 71.11%, 和93.75%。
本研究为临床提供了一种基于常规影像学检查的、可有效预测皮质下脑小血管病患者发生认知障碍的模型。同时,从脑结构和脑功能连接的角度进一步揭示皮质下缺血性脑小血管病的发生机制。
图.基于DTI+fMRI组合的皮质下脑小血管病患者认知障碍预测模型
该研究受国家自然科学基金(82220108009,81970996,82201568)和科技部国家重点研发计划(2022YHC3602600)等项目支持。